
Attacks on UEFI Security

Rafal Wojtczuk <rafal@bromium.com>

Corey Kallenberg <coreykal@gmail.com>



• Overwrite the contents of the firmware (UEFI), 
which is typically stored on a SPI flash chip that is 
soldered to the motherboard

Objective



Rules

• Only software attacks against the firmware are considered
• With physical access, reprogramming the firmware is 

accomplished trivially with a flash programmer



Why Bother?

• The firmware can:
– Compromise the rest of the software stack

– Brick the platform

– Survive OS reinstallations

• Ideal place for a rootkit!



Features vs Security

• The chipset provides features to:
– Reprogram the contents of the firmware
– Protect the firmware against arbitrary programming 

attempts

• It’s up to the OEM to utilize these features to:
– Allow legitimate firmware updates
– Deny malicious firmware programming attempts



• 1st attack against flash protections presented 
by Wojtczuk and Tereshkin in 2009[1]

• 2nd and 3rd attack by Kallenberg et al[2][3]

• But these attacks were suboptimal…



• Previous attacks:
– Complex memory corruption vulnerabilities
– Required expensive and tedious testing to exploit
– Difficult to port and reproduce
– Extremely system dependent

• Unlikely to be exploited “in the wild” for these reasons



• Today we bestow onto you vulnerabilities which 
are:
– Prevalent among UEFI and legacy BIOS systems

– Result in reflash of firmware and/or SMM breakin

– Straight forward enough to DIY, no exotic equipment 
needed



Multi-Layered Protection

• There are multiple layers of protection that 
prevent arbitrary flash programming attempts

• We will evaluate and then break through each 
layer in series



Layer 1: BIOS_CNTL

• Write access to the flash is only possible if 
BIOSWE is set

• Setting BLE allows SMM to arbitrate write 
access to the flash

from: http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html


BIOS_CNTL Action 1/5

• Kernel driver attempts to set BIOSWE using a 
memory mapped write transaction to the 
chipset



BIOS_CNTL Action 2/5

• Because BLE is set, an SMI occurs

• SMI handler begins executing



BIOS_CNTL Action 3/5

• SMM determines the write attempt is 
illegitimate and unsets BIOSWE



BIOS_CNTL Action 4/5

• Control is returned from SMM to the original 
thread



BIOS_CNTL Action 5/5

• Flash write cycle fails because BIOSWE is unset



• Move to PCH chipset architecture introduced new feature 
to BIOS_CNTL with “interesting language”

• “BIOS Region is not writable unless all processors are in 
SMM” ???

http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-datasheet.pdf

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/5-chipset-3400-chipset-datasheet.pdf

New (PCH)

Old (ICH)

http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/5-chipset-3400-chipset-datasheet.pdf


• It appears that Intel was patching a latent race 
condition in BIOS_CNTL protections!

• In private conversations, Sam Cornwell and John 
Butterworth of MITRE suggested this might be an 
issue!

Speed Racer!



BIOS_CNTL Race 1/4

• This time we consider a multicore environment

• Core 1 begins the process by write enabling the 
flash



BIOS_CNTL Race 2/4

• Because BLE is set, an SMI is generated and 
core 1 immediately enters SMM



BIOS_CNTL Race 3/4

• Although core 2 will also enter SMM, it does not 
happen instantaneously. 

• Core 2 has a small window in which to attempt 
flash write operations



BIOS_CNTL Race 4/4

• The SMI handler unsets BIOSWE, but it’s 
already too late.



• “speed racer” assigned CERT VU#766164
• On systems with PCH chipsets, setting SMM_BWP resolves the issue, but 

adoption rate of SMM_BWP appears sporadic[4].
• Vulnerable systems are trivially exploited with a pair of kernel drivers

– One for setting BIOSWE in a tight loop
– Another for attempting the flash programming operation in a tight loop
– No penalty for failing, so you can just brute force!



• BLE/BWE protection can be defeated by speed 
racer in the absence of SMM_BWP

• If SMM_BWP is supported and utilized, we are 
forced to break into SMM to continue our 
assault on the firmware



Attacking SMM: Inspired by the misery 
of Darth Venamis

• In the star wars universe, Darth 
Venamis is kept comatose by 
Darth Plagueis for the purpose of 
exploitation

• Perhaps we can put UEFI into a 
coma for exploitative purposes as 
well?



• The bits that lock down SMM and the 
firmware are cleared during a reset

• “sleep”/”suspend” are typically implemented 
as an ACPI S3 sleep, which results in these 
lockdown bits being cleared

• S3 sleep = dark jedi coma



http://www.intel.com/content/dam/doc/guide/efi-boot-script-specification-v091.pdf

• During boot, the “platform configuration” is saved to a “boot script” so 
that s3 resume can happen more efficiently

• Included in the boot script are the contents of registers involved in 
locking down the platform
– Such as TSEG and BIOS_CNTL



ACPI NVS is just normal RAM and 
has no additional protections!

• Contents of the boot script were stored in ACPI NVS 
(unprotected) RAM on the consumer systems we looked at

• Attacker with access to physical memory could manipulate 
boot script contents

http://www.intel.com/content/dam/doc/guide/efi-boot-script-specification-v091.pdf



Boot Script

• From [12] “During a normal boot, DXE drivers record the platform’s 
configuration in the boot script, which is saved in NVS. During the 
S3 resume boot path, a boot script engine executes the script, 
thereby restoring the configuration.”

• “The chipset configuration can be viewed as a series of memory, 
I/O, and PCI configuration operations, which DXE drivers record in 
the Framework boot script. During an S3 resume, a boot script 
engine executes the boot script to restore the chipset settings.”





Okaaaayyy…arbitrary code eh?

• It means that if we can achieve any of the below 
then we can force S3 suspend/resume cycle and 
run arbitrary code in the context of the Boot 
Script interpreter 
– Alter the content of the Boot Script (insert a custom 

dispatch opcode) 

– Alter the target of any of existing EFI BOOT SCRIPT 
DISPATCH OPCODE 

– Alter the data structures used by firmware to locate 
the Boot Script 



Exploitation Visualized 1/2

• Pointer to the boot script can be discovered by 
reading the contents of the “AcpiGlobalVariable” 
UEFI non-volatile variable. 
– Contents of “AcpiGlobalVariable” point to a structure

– At +0x18 is a pointer to the boot script



Exploitation Visualized 2/2

1. Attacker makes a copy of original boot script

2. Attacker inserts an evil dispatch at the top of the 
copied boot script

3. Attacker overwrites AcpiGlobalVariable boot script 
pointer with a pointer to his evil boot script



Hardened Boot Script

• All of the available systems we evaluated stored boot script 
in unprotected ACPI NVS

• However, EDK2[5] protects the contents of the boot script 
with a “lockbox” which is protected in SMRAM

Picture from [11]



Hardened Boot Script Exploitation

• The only system we identified that used the SMM lockbox to 
protect the boot script was a UEFI development motherboard[6]

• Its implementation was vulnerable because it dispatched 
functions in unprotected ACPI NVS

• An attacker could hook these functions to gain arbitrary code 
execution in the context of the boot script



Boot Script Execution Context

• Platform is largely “unlocked” at this point
• BIOS_CNTL unlocked so BWE can be freely 

enabled 
– This means we don’t necessarily have to break into 

SMM to attack the firmware
– But it would still be fun!

• Regarding SMM:
– SMRRs are set, so no CPU read/write access to 

SMRAM
– TSEG is unlocked however

• So we can disable TSEG by locking it to a value that doesn’t 
actually protect SMRAM



SMM Protection

• SMM is protected from non-SMM CPU access by SMM 
Range Registers (SMRR)
– SMRRs are enabled in boot script context

• SMM is protected from DMA by TSEG
– TSEG is unlocked in boot script context!

CPU SMM

Device

TSEG

SMRR



SMM Protection Disabled

• We were able to disable TSEG by locking it to a value 
above SMRAM (FF000000)

• DMA code is very device specific, so we wait until 
context has returned to the OS and then use a hard 
disk driver to initiate the DMA transaction on our 
behalf[7]

CPU SMM

Device

TSEG

SMRR



Venamis Summary

• Assigned CERT VU #976132

• All of the UEFI systems we surveyed 
were vulnerable

• Allows a kernel level attacker to:
– Bypass BIOS_CNTL flash protections

– Escalate to SMM

• Relatively easy to exploit, just requires 
some reversing of the boot script 
format



Co-discovery

• CERT VU #976132 was co-reported by 
the Intel Advanced Threat Research 
Team!

– Yuriy Bulygin, Mikhail Gorobets, Andrew 
Furtak, Oleksander Bazhaniuk, Alexander 
Matrosov



Where we’re at

• One last hurdle remains:

– Protected Range register masks



Protected Range Masks

• Protected Range registers allow you to define 
regions on the flash that are non-writable

• Even SMM is unable to make writes to these 
regions



Flash Protections and UEFI

• The UEFI Code region may (or may not) be write 
protected by PR masks

• Region of the flash where UEFI Non-Volatile Variables 
are stored must be left writable at runtime, because 
the variables may be updated by the operating system

SPI Flash

UEFI Code

Non-Volatile 
Variables

PR Write Protection

SMM Writeable



Flash Protections and UEFI

• Can we find something in the Non-Volatile 
Variable region that will allow us to corrupt 
the rest of the firmware?

SPI Flash

UEFI Code

Non-Volatile 
Variables

PR Write Protection

SMM Writeable



Idea #1

• Force a memory corruption vulnerability in the 
UEFI code by corrupting the contents of the Non-
Volatile variable region

• If this vulnerability occurs before PR masks are 
set during boot, we win

SPI Flash

UEFI Code

Non-Volatile 
Variables



• Normally we can’t control DataSize because it’s part of 
an authenticated variable

• SMM is able to arbitrarily modify this data however

AutenticatedVariableServiceInitialize() in UDK2014/SecurityPkg/VariableAuthenticated/RuntimeDxe/AuthService.c [8]



• An SMM attacker can control the metadata 
associated with the variables, and hence control 
what is returned by GetNextVariablePtr

• This can lead to buffer overflow during the 
EfiCopyMem

Reclaim() in EDK/Sample/Universal/Variable/RuntimeDxe/FS/FSVariable.c [9]



• Vulnerabilities assigned CERT VU#533140

• May allow bypassing of PR masks if they can be 
triggered early in the boot up process
– Implementation dependent

• But wait! You said we wouldn’t have to do 
complicated, difficult to reproduce, memory 
corruption vulnerabilities to hack our BIOS’s!



• Upon further investigating the UEFI code[8], it was 
determined that authenticated variable contents are 
used to verify incoming firmware updates
– So SMM can reflash the firmware by leveraging the normal 

firmware update path

• Private discussions with a UEFI developer confirmed 
that this is the case, and that SMM is in the trusted 
code base for UEFI in general
– A new hardware feature[10] will address this in the future

There is no 
Protected 

Range!



• It turns out that many systems do not even make use of PR 
masks[2]

• Of all the system’s we surveyed, only HP made use of PR masks
– And they had incomplete coverage over the code region of the flash 

chip

• So on most UEFI systems, if you can get into SMM, UEFI will also 
fall



Summary
• An important component of firmware flash protections 

on Intel chipsets is subject to a race condition
– Patched on newer systems, but only if the OEM makes use 

of a new feature, which many don’t
– Consequence is DoS or a malicious reflash of the firmware
– Easily exploited with 2 kernel drivers

• The UEFI boot script can be maliciously modified to 
break into SMM
– Every UEFI system we surveyed was vulnerable
– Easy to exploit with a kernel driver and some reverse 

engineering of the boot script format

• An attacker who escalates to SMM can likely reflash
your firmware
– A new hardware feature will help address this in the 

future[10]



Acknowledgements

• Thanks to Intel PSIRT, UEFI Security Response 
Team, and CERT for helping coordinate these 
vulnerabilities!



Bibliography 1

[1] Attacking Intel BIOS – Alexander Tereshkin & Rafal Wojtczuk – Jul. 2009 
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf
[2] Defeating Signed BIOS Enforcement – Kallenberg et al., Sept. 2013 –
http://www.mitre.org/publications/technical-papers/defeating-signed-bios-
enforcement
[3] Extreme Privilege Escalation on Windows 8/UEFI Systems – Kallenberg et al., 
August 2014
http://www.mitre.org/publications/technical-papers/extreme-privilege-escalation-on-
windows-8uefi-systems
[4] Setup for Failure: Defeating UEFI – Kallenberg et al., Apr 2014 
http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/Sy
Scan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
[5] EDK2 UEFI Reference implementation
http://tianocore.sourceforge.net/wiki/EDK2
[6] DQ57TML UEFI Development Kit Firmware
http://uefidk.com/develop/development-kit

http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://www.mitre.org/publications/technical-papers/defeating-signed-bios-enforcement
http://www.mitre.org/publications/technical-papers/extreme-privilege-escalation-on-windows-8uefi-systems
http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://tianocore.sourceforge.net/wiki/EDK2
http://uefidk.com/develop/development-kit


Bibliography 2

[7] Poacher Turned Gamekeeper: Lessons Learned from 8 years of breaking 
hypervisors” – Wojtczuk, Aug 2014 https://www.blackhat.com/docs/us-
14/materials/us-14-Wojtczuk-Poacher-Turned-Gamekeeper-Lessons_Learned-From-
Eight-Years-Of-Breaking-Hypervisors-wp.pdf
[8] UDK2014
http://tianocore.sourceforge.net/wiki/UDK2014
[9] EFI Development Kit
http://tianocore.sourceforge.net/wiki/EDK
[10] Intel Platform Firmware Armoring Technology
http://www.google.com/patents/WO2012039971A2?cl=en
[11] A Tour Beyond BIOS: Implementing S3 Resume with EDK2 – Jiewen Yao and 
Vincent Zimmer, October 2014
[12] Intel Platform Innovation Framework for EFI S3 Resume Boot Path Specification
http://www.intel.com/content/dam/doc/reference-guide/efi-s3-resume-boot-path-
specification.pdf

https://www.blackhat.com/docs/us-14/materials/us-14-Wojtczuk-Poacher-Turned-Gamekeeper-Lessons_Learned-From-Eight-Years-Of-Breaking-Hypervisors-wp.pdf
http://tianocore.sourceforge.net/wiki/UDK2014
http://tianocore.sourceforge.net/wiki/EDK
http://www.google.com/patents/WO2012039971A2?cl=en
http://www.intel.com/content/dam/doc/reference-guide/efi-s3-resume-boot-path-specification.pdf

